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Abstract. Role Based Access Control (RBAC) is a methodology for
providing users in an IT system specific permissions like write or read to
users. It abstracts from specific users and binds permissions to user roles.
Similarly, one can abstract from specific documents and bind permission
to document types.
In this paper, we apply Description Logics (DLs) to formalize RBAC.
We provide a thorough discussion on different possible interpretations of
RBAC matrices and how DLs can be used to capture the RBAC con-
straints. We show moreover that with DLs, we can express more intended
constraints than it can be done in the common RBAC approach, thus
proving the benefit of using DLs in the RBAC setting. For deriving addi-
tional constraints, we introduce a strict methodology, based on attribute
exploration method known from Formal Concept Analysis. The attribute
exploration allows to systematically finding unintended implications and
to deriving constraints and making them explicit. Finally, we apply our
approach to a real-life example.

1 Introduction

1.1 Access control matrix, RBAC, Description Logics

An access control matrix M , first introduced by Lampson [1], is an abstract
formal computer security model which consists of a set of objects O, subjects S
and actions A. Each matrix row represents a subject and each column represents
an object. Each matrix element M [s, o] ⊆ A is the set of actions which a subject
s ∈ S is allowed to perform on object o ∈ O. For any type of access control
system it can model the static access permissions, ignoring further definitions
of a policy like rules and dynamic behavior in time. One type of access control
system is Role Based Access Control (RBAC) [2], which abstracts from specific
users and binds permissions to user roles. The permission set of a specific user is
the union of all permissions of the roles he is assigned to. Flat RBAC comprises
a set of users U , a set of roles R and a set of permissions P . Users are assigned
to roles via a relation UA ⊆ U × R, and permissions are assigned to roles via
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a relation PA ⊆ R × P . One extension to this simple model is Hierarchical
RBAC, which introduces a hierarchy of user roles for permission inheritance.
The partial order >R⊆ R × R defines the role dominance relation. If a senior
role rs ∈ R dominates a junior role rj ∈ R, it inherits all permission from it (i.e.
∀p ∈ P : (rj , p) ∈ PA ∧ (rs, rj) ∈>R→ (rs, p) ∈ PA).

The relationship between RBAC and other access control systems which can
be modeled with the access control matrix has been elaborated in [3]. For our
paper we straightforwardly interpret the set of user roles as the set of subjects
(S = R) and we define permissions as a set of tuples of action and object
(P ⊆ A×O). We call this an RBAC matrix. An RBAC policy can not completely
be described by an RBAC matrix, since it contains further constraints, e.g. rules,
dynamic behavior in time, user role hierarchy, implications between the allowed
actions etc. Objects do not need to be individuals but could also be abstract
groups. As an example for the RBAC matrix, each row represents a user role
and each column a document type.

Description Logic (DL) [4] systems are formal knowledge representation and
reasoning systems which provide inference services that deduce implicit knowl-
edge from the explicitly represented knowledge. For these inference services to
be feasible the underlying inference problems must at least be decidable, since
DL is a decidable fragment of First Order Logic this is provided. Some proposals
are available to model an RBAC policy with a DL ontology, in order to reduce
authorization decision to standard reasoning services. Some of these approaches
contained modeling flaws which we discussed in [5] and [6].

1.2 Our contributions

Our paper discusses how FCA can be applied in order to provide services to
a security policy designer. In our approach, a role-based access control matrix
is formalized as triadic formal context KR,D,P := (R,D,P, I), with a set R of
role names, a set D of document type names and a set P of permission names.

Although it is quite straightforward to use an access control matrix as a
model for RBAC, the interpretation of the matrix is not a priori clear. The
paper contains a discussion of three interpretations of an RBAC matrix.

Up to now the DL modeling was done with ad hoc approaches. In [6] we
discussed a flawed approach and proposed a reworked version. In this paper, we
show how in each of the three possible interpretations, the information contained
in the RBAC matrix is correctly modeled by DL general concept inclusions
(GCIs). The used DL is ALEROI which is a subset of SROIQ, the basis for
the coming W3C OWL 2 standard. This DL is required to simulate the concept
product expressions RI × DI ⊆ PI and (RI × DI) ∩ PI = ∅.

Using DLs, it will turn out that we can model additional constraints which
are intended by the RBAC engineer, but which cannot be modd in role-based
access control matrix alone. For example for a review process, it is not allowed
that the same person who writes a document also approves it. The inclusion
of axiom mayWrite u mayApprove v ⊥ in the DL model defines that both
permissions are disjoint. The DL model allows consistency checks of the RBAC



policy with given additional restrictions. Both the higher expressiveness of a DL
based modelling approach and the consistency check clearly show the benefit of
using DLs for RBAC.

Generally, one can say that ontology editors provide reasoning facilities,
where for example the consistency of an DL knowledge base can be checked.
Roughly speaking, ontology editors support checking the soundness of a DL
knowledge base. In this paper, we do not only target the soundness of the DL
formalization of an RBAC matrix, but also the completeness (compare to [7]).
We introduce a strict methodology, based on the attribute exploration method
of FCA, for deriving additional constraints in RBAC setting. Our methodol-
ogy derives such constraints not explicitly contained in the RBAC matrix in a
computer supported dialog with the RBAC engineer. This helps the engineer to
create the policy as DL model based on the matrix.

The paper is structured as follows: In Sec. 2, all relevant notions are formally
defined, and the running example we will use is introduced. Moreover, in this
section the tree possible interpretations of an RBAC matrix are discussed. In
Sec. 3, we show how the information of an RBAC matrix can be expressed by
means of DL GCIs. In Sec. 4, we thoroughly discuss how attribute exploration
can be used in order to obtain additional constraints from the RBAC matrix,
and how these constraints are then modeled with DL GCIs. In Sec. 4, we apply
our approach to a real-life example. Finally, in Sec. 6 we summarize this paper
and discuss future research.

2 Basic Definitions

In this section, all relevant notions which will be used in this paper are formally
defined, and our working example is introduced.

Vocabulary: As already mentioned, our starting point is a three-dimensional
matrix, where the three dimensions are the roles, document types and permis-
sions. In order not to mix up user roles and DL roles, with “role” we always refer
to a user role, whereas we use the OWL terminology “property” for a DL role. In
our ongoing formalization, both roles and document types will be modeled as con-
cept names of a (appropriately chosen) DL, and each permission will be modeled
as a property between roles and document types. That is, we consider a DL vo-
cabulary which consists of a set R of role names, a set D of document type names,
and of a set P of permission names. The vocabulary of these names will be de-
noted V. We will use a working example with specific roles, document types and
permissions. We consider the permissions mayApprove, mayWrite and mayOpen,
which are abbreviated by MA, MW and MO, respectively. The document types
are user manual, marketing document, customer contract document, term of use
document, installation guide, external technical interface document, design docu-
ment and rating entry, abbreviated by UM, MD, CCD, ToUD, IG, ETID, DD, RE.
The roles are marketplace visitor, service consumer, software development engineer,
service vendor, legal department employee, service provider, marketing employee,
technical editor and customer service employee, abbreviated by MV, SC, SDE, SV,



LDE, SP, ME, TE and CSE. This example stems from the research project The-
seus/Processus from a scenario where documents describe aspects of services
offered in the Internet of Services. The documents are accessible by different
roles with different permissions.

Formal Contexts: The three-dimensional matrix of roles, document types
and permissions is formalized as a triadic formal context KR,D,P := (R,D,P, I).
The example we use in this paper is provided in Tab. 1.
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MV × × ×
SC × × × × × × × × ×
SDE × × × × × × × × × × × ×
SV × × × × × × × × × × × × × × ×
LDE × × × × × × × × × ×
SP × × × × × ×
ME × × × × × × × ×
TE × × × × × × × × × × ×
CSE × × × × × × × × ×

Table 1. Our example RBAC matrix

Our aim is to conduct an attribute exploration in order to explore dependen-
cies between different roles, different document types, or different permissions.
As attribute exploration is applied to dyadic contexts, we have do derive such
contexts from the given triadic context. This can be done in several ways.

1. First, we can consider “slices” of the triadic context. For our goal, it is most
useful to consider the “slice” for each P ∈ P. That is, for a given P ∈ P, we
consider KP

R,D := (R,D, IP), where (R,D) ∈ IP :⇔ (R,D,P) ∈ I.
2. Next, we can consider the dyadic contexts, where the set of attributes is one

of the sets R, D, P, and the set of objects is the cross-product of the remain-
ing two sets. E.g. we can consider the context KR×P,D := (R×P,D, IR×P,D)
with ((R,P),D) ∈ IR×P,D ⇔ (R,D,P) ∈ I. This is a straight-forward trans-
formation. To simplify notations, we will denote the incidence relation again
by I, thus writing (R × D,P, I). We can construct six dyadic contexts this
way, namely KR×D,P, KP×R,D, KD×P,R and the respective named variants
with identical cross table KD×R,P, KR×P,D, KP×D,R.

3. For a given context K := (G, M, I), when attribute exploration is conducted,
sometimes it is sensible to add an additional attribute ⊥ (which satisfies
¬∃g ∈G : (g,⊥) ∈ I) to M . We use K⊥ := (G, M ∪ {⊥}, I) to denote this
context (again, we simply ‘reuse’ the symbol ‘I’ for the incidence relation).



In our example no agent will be allowed to write and approve the same
document, thus mayApprove ∧mayWrite → ⊥.

As each of the formal context only deals with names for roles, document types,
and permissions, but not with instances of these names (in some DL interpreta-
tions, see below), all these formal contexts are called T -context.

Interpretations: The DL-interpretations for RBAC matrices are straight-
forwardly defined: For our setting, a DL-interpretation for V is a pair (∆, · I)
with a non-empty universe (of discourse) ∆ and an interpretation function · I
which satisfies:

– RI ⊆ ∆ for each R ∈ R. Moreover, we set RI :=
⋃

R∈R RI . The elements
r ∈ RI are called agents.

– DI ⊆ ∆ for each D ∈ D. Moreover, we set DI :=
⋃

D∈D DI .
– PI ⊆ RI ×DI for each P ∈ P
– RI ∩DI = ∅ (nothing is both agent and document)
– RI ∪DI = ∆ (everything is either agent or document)

Note that the first two conditions are standard conditions for DL interpretations,
whereas the last 3 condition are additional constraints.

Permissive, Prohibitive and Strict Interpretations: As each formal
object and attribute of (R,D,P, I) stands in fact for a whole class of agents resp.
documents, it is not a priori clear what the semantics of the incidence relation I
with respect to an interpretation (∆, · I) is. So we have to clarify the meaning of
I. First we might assume that a relationship (R,D,P) ∈ I means that each agent
r ∈ RI has the permission PI for each document d ∈ DI . So a cross in the cross-
table of the context (R,D, IP) grants permissions to agents on documents, and
we can read from the context which permissions are at least granted to agents.
Vice versa, we might assume that a missing relationship (R,D,P) /∈ I means that
no agent r ∈ RI has the permission PI for any document d ∈ DI . So a missing
cross in the cross-table of the context (R,D, IP) prohibits that permissions are
granted to agents, and we can read from the context which permissions are
at most granted to agents. And finally, we could of course assume that both
conditions hold. That is, we can read from the context which permissions are
precisely granted to agents.

interpretation cross no cross
strict permission for all individuals prohibition for all individuals
permissive permission for all individuals permission for some individuals
prohibitive permission for some individuals prohibition for all individuals

Table 2. Variants how to interpret a cross in the context



These three understandings lead to the notion of permissive, prohibitive and
strict interpretations (with respect to the formal context) summarized in Tab. 2.
They are formally defined as follows:

– An interpretation (∆, · I) is called permissive (with respect to KR,D,P), and
we write (∆, · I) |=+ (R,D,P, I), iff. for all role names R ∈ R, all document
type names D ∈ D all permission names P ∈ P we have:

(R,D,P) ∈ I =⇒ ∀r∈RI ∀d∈DI : (r, d) ∈ PI

In other words, if (R,D,P) ∈ I, we have RI ×DI ⊆ PI .
– An interpretation (∆, · I) is called prohibitive (with respect to KR,D,P), and

we write (∆, · I) |=− (R,D,P, I), iff. for all role names R ∈ R, all document
type names D ∈ D all permission names P ∈ P we have:

(R,D,P) /∈ I =⇒ ∀r∈RI ∀d∈DI : (r, d) /∈ PI

In other words, if (R,D,P) /∈ I, we have (RI ×DI) ∩ PI = ∅.
– An interpretation (∆, · I) is called strict (with respect to KR,D,P), iff. it is

both permissive and prohibitive.

We say that we use the permissive approach (prohibitive approach, strict approach),
if we assume that each interpretation is permissive (prohibitive, strict).

Instantiations of Contexts: As already said in the introduction, it will
turn out that for running attribute exploration on the context, it is reasonable
not to consider the T -context, but contexts where on the side of the objects,
roles are replaced by “real” users resp. document types are replaced by “real"
documents. Essentially, instantiations of a context contain at least all rows of
the given context, and there might be more rows, but these additional rows must
be extensions of rows in the given context. These contexts are now introduced.

Let one of the contexts KP
R,D := (R,D, IP) (P ∈ P) be given. An instantiation

of KP
R,D is a context (R,D, JP), where R is a set of agents such that

– ∀R∈R ∃r∈R ∀D∈D : (R,D) ∈ IP ⇔ (r, D) ∈ JP

– ∀r∈R ∃R∈R ∀D∈D : (R,D) ∈ IP ⇒ (r, D) ∈ JP

Such a context will be denoted KP
R,D. We define similarly the instantiations

KR×P,D of KR×P,D, and KP×R,D of KP×R,D (where again the role names are
replaced by agents), as well as the instantiations KP

D,R of KP
D,R (P ∈ P), KD×P,R

of KD×P,R, and KP×D,R of KP×D,R (where now the document type names are
replaced by documents).

Instantiations of the contexts where the permissions are the attributes, i.e.
instantiations KD×R,P of KD×R,P (resp. KR×D,P of KR×D,P) are defined similarly
(where on the side of the objects, both document type names and role names
are replaced by “real” documents and “real” agents, respectively).

An example for an instantiation of KmayWrite
R,D is given in Tab. 3.
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agent1
agent2 ×
agent3 × × × ×
agent4
agent5 × ×
agent6
agent7 ×
agent8 × × × ×
agent9 ×
agent10 × × ×
agent11 × × × × × ×
agent12 × ×

Table 3. The context KmayWrite
R,D and one possible instantiation.

3 Expressing the Cross-Table by GCIs

In this section, we scrutinize how the information of the context KR,D,P can
be expressed by means of DLs. Besides the standard DL quantifications ∃R.C
(the set of entities which stand in relation R to at least one instance of C) and
∀R.C (the set of entities which stand in relation R only to instances of C), we
will use the non-standard constructor ∀C.R (the set of entities which stand in
relation R to all instances of C). This constructor can be expressed by means of
negation of relations, as ∀C.R is equivalent to ∀¬R.¬C (see [8] for a thorough
discussion of the constructor). Adding it to ALC still yields a decidable DL, but
as this constructor is certainly non-standard, is it not supported by common DL
reasoners.

For the permissive approach, we have to capture the condition RI×DI ⊆ PI .
The left expression is a concept product. It can not be expressed in SHOIN (D),
which is the underlying DL of OWL DL. In OWL 2.0, there does not exist a
native language construct for the concept product, but Krötzsch, Rudolph, Hit-
zler provide in [9] a workaround to express it in OWL 2.0. Using the constructor
∀C.R, the condition RI ×DI ⊆ PI can be expressed with the GCIs

R v ∀D.P (i.e. R v ∀¬P.¬D) and D v ∀R.P−1 (i.e. D v ∀¬P−1.¬R)

For the prohibitive approach, the condition (RI × DI) ∩ PI = ∅ has to be
captured. This can be expressed by the two GCIs

R v ∀P.¬D and D v ∀P−1.¬R

Note that this condition is precisely the condition for the permissive approach,
when we replace each permission P by its complement ¬P. This duality principle
will be discussed in the next section.



If we knew that KR,D,P is correct, and if we know which type of approach
(permissive, prohibitive, strict) we use, then we can describe the information of
KR,D,P by DL GCIs. We first set Rall :=

⊔
R∈R R and Dall :=

⊔
D∈D D. Now we

define the following knowledge base:

KB0 := {Rall v ∀P.Dall ,Dall v ∀P−1.Rall | P ∈ P}∪{Rall v ¬Dall}∪{RalltDall ≡ >}

Obviously, a general DL-interpretation (∆, · I) is a DL-interpretation of V iff.
it satisfies KB0. According to the chosen approach, we can now capture the
information of KR,D,P as follows:

KB+ := KB0 ∪ {R v ∀¬P.¬D , D v ∀¬P−1.¬R | (R,D,P) ∈ I}
KB− := KB0 ∪ {R v ∀P.¬D , D v ∀P−1.¬R | (R,D,P) 6∈ I}
KB± := KB+ ∪KB−

Again, a DL-interpretation is obviously an permissive (prohibitive, strict) inter-
pretation of KR,D,P, if it satisfies KB+ (KB−, KB±).

4 Using Attribute Exploration for RBAC matrices

In this section, we discuss how attribute exploration can be utilized in order
to create a DL knowledge base which captures as best as possible the depen-
dencies between roles, documents, and permissions. It is crucial which approach
(permissive, prohibitive, strict) we use, thus we first elaborate the differences
between these approaches with respect to attribute exploration. In the second
and third part of this section, we go into the details of an attribute exploration
for instantiations of contexts in the permissive approach.

4.1 General discussion

We first compare the permissive and the prohibitive approach. In the permis-
sive approach, the crosses in a cross-table carry information, whereas missing
crosses are not informative. In the prohibitive approach, the situation is con-
verse: Missing crosses carry information, and crosses are not informative. Miss-
ing crosses in a relation correspond to crosses in the complement of the relation.
Thus if we replace in the prohibitive approach the relations mayOpen,mayWrite
and mayApprove by their complements mayOpenc = mustNotOpen, mayWritec =
mustNotWrite, mayApprovec = mustNotApprove, we have a situation similar to
the permissive approach. That is, we have the following duality principle: Any ac-
count to the permissive approach can be turned into an account to the prohibitive
approach (and vice versa) by replacing each permission by its complement.1 For
this reason, we do not target the prohibitive approach in this paper.
1 But keep in mind that switching between the permissive and prohibitive approach

requires changing the underlying DL-language, including the need for non-standard
constructors in the permissive approach.



We assume that the set of role names, document type names, and permission
names is fixed. Conducting an attribute exploration on one of the T -contexts
seems for this reason to some extent pointless, as we cannot add new objects
(counterexamples for implications which do not hold). We can still use attribute
exploration in order to check that the information in KR,D,P is correct, but this
idea does not tap the full potential of attribute exploration and will not be carried
out in this paper (we assume that the matrix KR,D,P is correct). But notice that
this check for correctness would have avoided the inconsistency between role
hierarchy, DL model and access matrix discussed in [6]. Anyhow, we emphasized
that in the formal context, the formal objects (the elements of R) and attributes
(the elements of D) stand in turn for complete classes (of agents and documents).
This can be used to apply attribute exploration to RBAC matrices. Assume we
stick to the permissive approach. Assume moreover that we consider a permissive
interpretation (∆, · I) with respect to KR,D,P. Then for a given permission P ∈ P,
agent r ∈ RI for a role R ∈ R, and document d ∈ DI for a document type D ∈ D,
we might have that r has permission P to d (i.e., (r, d) ∈ PI), though we do not
have (R,D,P) ∈ I. That is, it is sensible to run an attribute exploration on the
instantiations of the T -contexts. As we will see in the next section, with attribute
exploration we can in fact infer constraints for the dependencies between roles,
documents and permissions which are not captured by KR,D,P.

In the strict approach, the situation is different. If we consider a strict in-
terpretation (∆, · I) with respect to KR,D,P, then for a given permission P ∈ P,
agent r ∈ RI and document d ∈ DI , we have (r, d) ∈ PI ⇔ (R,D,P) ∈ I.
That is, based on the given assumption that the sets of roles, documents and
permissions are fixed, all possible constraints for the dependencies between these
entities are already captured by KR,D,P. This observation has two consequences:
First, no DL formalization of the strict approach can extend the information
of KR,D,P, i.e., a DL formalization of KR,D,P is somewhat pointless. Second, the
instantiations of T -context are nothing but the T -context themselves (instan-
tiations might duplicate some rows, but this is of course of no interest), thus
conduction attribute exploration in the strict approach is pointless as well.

To summarize: As the permissive and prohibitive approach are mutually dual,
and as addressing the strict approach with DLs or attribute exploration is point-
less, it is sufficient that we here address only the permissive approach.

4.2 Attribute Exploration for Instantiations of T -contexts

In the last part we argued why we will run attribute exploration on instantiations
of T -contexts. Before doing so, we first have to discuss how implications in T -
contexts and their instantiations are read, and then we will scrutinize some
peculiarities for applying attribute exploration in our setting. In fact, due to the
fact that the objects and attributes of KR,D,P stand for whole classes, the existing
approaches for conducting attribute explorations on triadic contexts (e.g, [10])
cannot be applied to our framework.



Reading Implications We consider the two contexts of Tab. 3. In both con-
texts, term of use document→customer contract document holds. For the T -
context KmayWrite

R,D , the objects are classes, thus this implication is read as follows:
T -reading: For each role we have that whenever every agent of that
role may write all terms of use documents, then every agent of that role
may write all customer contract documents as well.

For the instantiation of KmayWrite
R,D , the objects are now instances instead of classes,

thus we have a different reading of the implication. It is:
I-reading: Whenever every agent may write all terms of use documents,
then the agent may write all customer contract documents as well.

Implications like this cannot be read from any T -context, thus running attribute
exploration on instantiations can indeed be used to obtain new knowledge.

Please note that none of the above readings conforms to the concept inclusion
term of use documentvcustomer contract document. This is due to in both impli-
cations we quantify over all term of use documents and all customer contract
documents. For the latter reading, we now show how it is correctly translated into
a GCI. The implication means that for any permissive interpretation (∆, · I) , we
have that ∀r ∈RI : (∀d∈ToUDI : (r, d) ∈ MWI → ∀d∈CCDI : (r, d) ∈ MWI)
holds. This condition is now transformed into a GCI as follows:

∀r∈RI :
(
∀d∈ToUDI : (r, d) ∈ MWI → ∀d∈CCDI : (r, d) ∈ MWI

)
⇐⇒ ∀r∈RI :

(
r ∈ (∀ToUD.MW)I → r ∈ (∀CCD.MW)I

)
⇐⇒ (∆, · I) |= ∀ToUD.MW v ∀CCD.MW

(we have to emphasize that the direction “→” of the last equivalence is only valid
if we assume that dom(MWI) ⊆ RI holds, but we assume that out interpretation
satisfies KB0, which models this additional condition).

In general, any implication of the form D1 ∧ . . .∧Dn−1 → Dn in an instanti-
ation of one of the contexts KP

R,D can be translated into the following GCI:

∀D1.P u . . . u ∀Dn−1.P v ∀Dn.P

Similarly, any implication of the form R1 ∧ . . . ∧ Rn−1 → Rn in an instantiation
of one of the contexts KP

D,R can be translated into the following GCI:

∀R1.P− u . . . u ∀Rn−1.P− v ∀Rn.P−

If we consider an instantiation of a context where the attributes of the context are
neither document type names nor role names, but instead permission names, the
situation is different, as now the attributes do not stand for classes of instances,
but for properties between instances. In Sec. 5.1, we consider a context KD×R,P.
In this context, mayWrite → mayOpen holds. The reading of this implication is

Whenever some agent has the permission to write some document, then
this agent may open this document as well.

So we see that in this case, the implication can be translated to a simple inclusion
axiom between properties, namely mayWrite v mayOpen.



4.3 Conducting Attribute Exploration on Instantiations

We consider the instantiation of a T -context, where we want to run attribute
exploration on. Obviously, for any T -context K, there exists a smallest instantia-
tion Kmin, which is isomorphic to K, and a largest instantiation Kmax. The basic
idea is that we start the attribute exploration with Kmin, and for implications
which do not hold, we add (as usual) counterexamples to the context, until we
finally reach a context Kae. Anyhow, in this process, we cannot add counterex-
amples in an arbitrary manner, as the context Kae we obtain must still be an
instantiation. The question is how this additional constraint can be captured by
attribute exploration. First of all, we trivially have the following subset relations
between the implications which hold in the contexts:

Imp(Kmax) ⊆ Imp(Kae) ⊆ Imp(Kmin)

So if we run an attribute exploration on Imp(Kmin), we could use Imp(Kmax)
as a set of additional background implications. Anyhow, a closer observation
yields that Imp(Kmax) only contains all implications of the form ∅ → m, where
m is an attribute of Kmin which applies to all objects. This can easily be seen
as follows: Let Kmin := (Omin,M, Imin), let Kmax := (Omax,M, Imax), let M1 :=
{m ∈ M | ∀o ∈ Omin : (o,m) ∈ Imin} and M2 := M −M1 be the complement of
M1. First of all, we obviously have that ∅ → m1 holds in Kmin, thus in Kmax as
well, for each m1 ∈ M1. Now let m2 ∈ M2. Then there exists an object o ∈ Omax
with (o,m) ∈ Imax ⇔ m 6= m2 for all m ∈ M . That is, there cannot exist any
(nontrivial) implication in Imp(Kmax) with m2 in its conclusion.

4.4 Choice of Instantiation Contexts for Attribute Exploration

Theoretically, we could conduct an attribute exploration on the minimal instan-
tiation of KR×P,D. Anyhow, we observe that any instantiation of KR×P,D is the
subposition of instantiations of the contextsKP

R,D, P ∈ P. Generally, for any
contexts K1, . . . , Kn with identical attribute sets, an implication holds in each
context K1, . . . , Kn if and only if it holds in the subposition of these contexts.
Thus if the RBAC engineer runs an attribute exploration on the minimal in-
stantiation of all contexts KP

R,D, P ∈ P, there is no need to run an attribute
exploration on the minimal instantiation of KR×P,D.

The discussion above applies to the context KD×P,R as well. To summarize:
For a complete investigation of KR,D,P, the RBAC engineer should run an at-
tribute exploration on the minimal instantiations of the following contexts:

– KP
R,D for each permission P ∈ P to infer document implications

– KP
D,R for each permission P ∈ P to infer role implications

– KR×D,P to infer permission implications

For the context KR×D,P, one could add the additional attribute ⊥ in order to
obtain constraints which express the disjointness of some permissions.



5 Evaluation of the Approach for a Real-Life-Example

In this section, we apply our approach to the example introduced in Tab. 1.
Due to space limitations, we do not conduct a complete attribute exploration:
Instead we consider only the contexts KD×R,P and KMO

D,R.

5.1 Attribute exploration for KD×R,P.

In this section, we conduct the attribute exploration on the minimal instanti-
ation Kmin of KD×R,P. For this exploration, as discussed in Sec. 2, we added
an additional attribute ⊥ to the set of attributes. An excerpt of Kmin, together
with its concept lattice, is provided in Fig. 1. This is the context the RBAC
engineer starts the attribute exploration on. In KD×R,P, thus in Kmin, we have
the following implications:

1. MW → MO
2. MA → MO
3. ⊥ → MO ∧MW ∧MA
4. MO ∧MW ∧MA → ⊥.

The first implication is read: Whenever some agent can write some document,
then this agent can open this document as well. It can easily be verified that
this implication should indeed hold in any interpretation KR,D,P, so we add the
property inclusion mayWritevmayOpen to our DL knowledge base. This is the
first example of a statement which can be modeled with a DL statement, but
not with matrix KR,D,P alone.

The next implication can be handled analogously, and we add the inclusion
mayApprovevmayOpen to the knowledge base.

The third implication trivially holds due to the definition of ⊥.
The last implication can, due to the first two implications, be simplified to

MW∧MA → ⊥. Due to the definition of ⊥, this is read: No agent can both write
and approve some document. Again, the engineer decides that this implication is
valid. Thus she adds the disjoint property axiom MWuMA v ⊥ to the knowledge
base.

If it is later verified that the complete RBAC policy is consistent, which can
be done with a DL reasoner, then each document which can be written or can
be approved has to be readable and furthermore no document can be written
and approved by the same agent. These are constraints which have not been
contained in the matrix but where derived by our methodology.

5.2 Attribute Exploration for KmayOpen
D,R .

For a second example, attribute exploration is performed on the minimal instan-
tiation context Kmin of KmayOpen

D,R . The context Kmin looks like the left third of
the cross table in Tab. 1 despite that it is transposed and document types are
replaced by documents (columns are roles, rows are documents). Due to space



M
O

M
W

M
A

⊥

(mv1, um1)
(sc1, um1) ×
(sde1, um1) × ×
. . .
(sv1, ig1) × ×
. . .
(cse1, re1) ×

Fig. 1. The instantiation context KD×R,P and its concept lattice

limitation, we do not conduct a complete attribute exploration on Kmin, but
only provide an example for an valid and an invalid implication.

Let us first note that in KmayOpen
D,R , the attributes SV, LDE and CSE apply to

all objects. So, according to the discussion in the implications ∅ → SV, ∅ → LDE
and ∅ → CSE hold in all instantiations of inKmayOpen

D,R , thus we can add the GCIs
> v ∀SV.mayOpen−, > v ∀LDE.mayOpen− and > v ∀CSE.mayOpen− to our
knowledge base.

A example for an implication (of the stem base) of Kmin is TE → ME. During
the attribute exploration, the RBAC engineer has to decide whether this impli-
cation holds in all desired interpretations of inKmayOpen

D,R . In fact there might be a
contract document in preparation by a technical editor which is not allowed to be
opened by a marketing employee. Thus the RBAC engineer adds a counterexample
to the context (CCD_in_prep,TE,MO) ∈ I and (CCD_in_prep,ME,MO) /∈ I.

Another example for an implication (of the stem base) of is MV → SC. In
fact, the RBAC engineer realizes that this implication must hold: Any document
which can be opened by a marketplace visitor can be opened by a service consumer
as well. So she adds the GCI ∀MV.mayOpen− v ∀SC.mayOpen− to the knowledge
base. This is again an example which cannot be derived from KR,D,P alone.

6 Conclusion and Future Research

In this paper we used the access control matrix as basic model for the behavior
of RBAC and called this an RBAC matrix. We discussed three interpretations
of an RBAC matrix and described that for the permissive approach additional
constraints can be derived which are not contained in the RBAC matrix. This
additional information was added to a so called RBAC policy, modeled in DL.

For obtaining a complete RBAC policy, we introduced a strict methodology,
based on FCA. The general approach was to derive different dyadic context from
RBAC matrix context KR,D,P and conduct an attribute exploration on them.
The attribute exploration allowed finding unintended implications and to derive
constraints and make them explicit.



Our ongoing work comprises several directions. First, we are seeking a smaller
DL fragment which meets our modeling requirements. This is particularly for
the permissive approach essential, as the DL modelling we used so far is based
on some non-standard DL constructors. Next, we want to support positive and
negative authorizations in one policy. That is, we want to combine the permissive
and prohibitive approach, so we have to investigate how our approach has to be
extended in order to do so. Finally, recall that our approach was based on the
assumption that sets of roles resp. document types are fixed. In some applications
this might be too strict. The three interpretations would have to be adapted and
even attribute exploration for the strict approach might make sense if we drop
this assumption. This is subject of future research as well. In the long run, we
target at a comprehensive methodology for utilizing DLs for RBAC.
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